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Abstract

We describe a general multi-stage stochastic integer-programming model for planning discrete

capacity expansion of production facilities. A scenario tree represents uncertainty in the model.

Variable splitting leads to two forms of this model: the first allows multiple expansions of each

facility over the planning horizon while the second allows at most one. Dantzig-Wolfe decom-

position of either split-variable model results in a binary master problem that solves easily, as

its linear-programming relaxation tends to yield integer solutions. For each scenario-tree node,

the decomposition defines a subproblem that may be viewed as a single-period, deterministic

capacity-expansion problem. An effective solution procedure results as long as the subproblems

solve efficiently, and the procedure incorporates a good “duals stabilization scheme”. We present

computational results for a model to plan the capacity expansion of a real-world electricity dis-

tribution network given uncertain future demand. The largest problem we solve to optimality

has 6 stages and 243 scenarios corresponding to a deterministic equivalent with a quarter of a

million binary variables.

Key words: Multi-stage stochastic integer program, column generation, branch-and-price, capacity expan-

sion, Dantzig-Wolfe decomposition

Subject classification: Facilities/equipment planning, capacity expansion, discrete, stochastic: multi-stage.

Production/scheduling, planning. Programming, stochastic, integer: column generation, Dantzig-Wolfe de-

composition, branch-and-price.

1 Introduction

Research from as early as the 1950s (Masse and Gibrat 1957) suggests that effective capacity plan-

ning for industrial facilities must treat uncertainty explicitly. The list of uncertain parameters can

include demands on those facilities, expansion costs, operating costs, and production efficiencies.
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This paper studies capacity-planning problems in which a sequence of discrete, capacity-expansion

decisions must be made over a finite planning horizon, subject to one or more sources of uncer-

tainty. A deterministic, single-period instance of our model, without capacity-expansion decisions,

can be viewed as an operations-planning model for a “system”, which might represent a single plant

with multiple production facilities, each of which has a fixed production capacity and manufactures

multiple products. Given production costs and known product demands, the system manager must

identify a minimum-cost, capacity-feasible, operational plan to meet those demands. Even this

single-period, deterministic problem can be complicated, as it may require a high level of modeling

fidelity that incorporates both continuous and discrete decision variables. However, the full planning

problem spans a multi-period horizon, must incorporate capacity-expansion decisions to accommo-

date demand growth, and faces uncertainty in demand, costs and possibly other parameters. An

optimal capacity-expansion plan will (1) enable production to meet demand, and (2) minimize the

expected costs of capacity expansion plus production over the planning horizon.

The stochastic capacity-planning problem can be formulated as a multi-stage, stochastic,

mixed-integer program that minimizes the expected discounted costs of capacity expansion and facil-

ity operations. We represent uncertain parameters using a standard scenario tree (e.g., Ruszczyński

and Shapiro 2003, pp 29-30). Given a finite number of scenarios and their probabilities, this problem

can then be recast as a large-scale mixed-integer program, i.e., a “deterministic equivalent”, that

can be solved, in theory, by a commercial optimization code. As we shall see, however, only the

smallest real-world instances may be tractable with this approach.

We overcome the intractability of the deterministic equivalent by applying dynamic column

generation to a Dantzig-Wolfe reformulation of the problem (Dantzig and Wolfe 1960, Appelgren

1969). The Dantzig-Wolfe master problem represents a simplified deterministic equivalent for the

problem, and subproblems generate columns for the master problem at each node of the scenario

tree. The master problem exhibits structure that tends to yield integer solutions from its linear-

programming (LP) relaxation, making it particularly easy to solve. When a facility can be expanded

at most once over the planning horizon, model simplifications enhance performance. Specially
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structured subproblems admit stronger formulations that further enhance performance, and “duals

stabilization” for the master problem (e.g., du Merle et al. 1999) dramatically improves solution

times for all problem variants.

The literature on stochastic capacity-planning problems is extensive: Luss (1982) and Van

Mieghem (2003) present comprehensive surveys. Manne’s seminal paper (Manne 1961), which mod-

els demand growth as an infinite-horizon stochastic process, stimulated much research on infinite-

horizon models (e.g., Giglio 1970, Freidenfelds 1980). However, such models cannot incorporate the

complex operational constraints that many real-world applications require.

More recent studies incorporate application-specific constraints. For instance, Sen et al.

(1994) develop a two-stage model that integrates demand, capacity expansion, and budget con-

straints, although it assumes only continuous capacity-expansion decisions and a single capacity-

expansion technology. The authors solve the model using a sampling-based stochastic-decomposition

algorithm.

The assumptions of a discrete probability distribution for uncertain parameters and a fi-

nite planning horizon mean that a set of scenarios can represent uncertain outcomes resulting in

a (possibly large-scale) mathematical programming problem. In this framework it is possible to

include a detailed operational model and “strategic details” such as a variety of capacity-expansion

technologies. Berman et al. (1994) present and solve a scenario-based multi-stage model with a

single capacity-expansion technology. Chen et al. (2002) extend this concept to multiple capacity-

expansion technologies, and also model economies of scale. However, both of these approaches

assume continuous capacity-expansion decisions.

The use of integer variables to model fixed-charge cost functions and economies of scale adds

considerable complexity. Eppen et al. (1989), Riis and Andersen (2002), Riis and Lodahl (2002),

and Barahona et al. (2005) model these using integer variables in the first-stage of two-stage models.

In recent years, increased computing power and advances in optimization techniques have

made it possible to develop and solve multi-stage stochastic integer-programming models. Ahmed

et al. (2003) solve such problems with a special branch-and-bound procedure that incorporates
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a heuristic upper-bounding method. Ahmed and Sahinidis (2003) and Huang and Ahmed (2005)

propose approximation schemes that asymptotically converge to an optimal integer solution as the

planning horizon lengthens.

Dynamic programming, though limited in its ability to integrate practical constraints, ap-

pears in a few recent applications. Laguna (1998) solves a two-stage model, which Riis and Anderson

(2004) extend to multiple stages. Rajagopalan et al. (1998) present a multi-stage model with deter-

ministic demand, but with uncertainty in the timing of the availability of new capacity-expansion

technologies.

A multi-stage stochastic program with integer variables in all stages does not allow a nested

Benders decomposition as does its continuous counterpart. In theory, LP-based branch and bound

can solve the deterministic equivalent for such a problem, but practical instances usually exceed the

ability of today’s software and hardware to solve them. Decomposition procedures based on column

generation are becoming more common, however, for solving large deterministic integer programs

(e.g., Lübbecke and Desrosiers 2002). This has spawned new research in solving stochastic integer

programs: Lulli and Sen (2004) use branch and price (column generation plus branch and bound)

for stochastic batch-sizing problems; Shiina and Birge (2004) use column generation to solve a

unit-commitment problem under demand uncertainty; Damodaran and Wilhelm (2004) model high-

technology product upgrades under uncertain demand; and Silva and Wood (2004) solve a generic

class of two-stage problems by branch and price.

We propose a new column-generation approach for solving multi-stage, stochastic, capacity-

planning problems: our master problem and subproblems differ substantially from those developed

by other researchers. Importantly, the generality of our approach should lend itself to applications

in many industries.

Our research relates most closely to that of Ahmed et al. (2003). These authors present a

multi-stage stochastic capacity-planning model that includes continuous as well as binary capacity-

expansion decisions. They disaggregate the continuous variables using the reformulation strategy

of Krarup and Bilde (1977), which enables a strong problem formulation. Our approach differs in

4



three major aspects:

1. We disaggregate the binary capacity-expansion decisions rather than continuous ones.

2. Random demand parameters directly determine a facility’s capacity requirements in Ahmed et

al. (2003), and operational constraints are simple: total installed capacity must meet or exceed

demand (although, in theory, their model can accommodate more complicated operational

constraints). Our approach incorporates a general operational-level submodel, which meets

demand using installed capacity however the modeler deems fit.

3. Ahmed et al. (2003) solve their mixed-integer program using an LP-based branch-and-bound

algorithm with a heuristic upper-bounding scheme; we use column generation.

The remainder of this paper develops as follows. The next section describes a general, multi-

stage, stochastic, capacity-planning model with discrete capacity-expansion decisions. We formulate

this problem as a deterministic-equivalent mixed-integer program. A revised reformulation, using

the technique of “variable splitting”, then enables a Dantzig-Wolfe decomposition whose master

problem is likely to be stronger than that derived from the original formulation. Section 3 explores

the strength of the decomposition. Section 4 formulates a restricted form of the general model which

allows at most one expansion of each facility over the planning horizon. In section 5 we present

computational results achieved by applying the general and restricted formulations to a capacity-

planning problem for an electricity-distribution network. The final section presents conclusions.

2 A Multi-Stage, Stochastic, Capacity-Planning Model

We follow Ahmed et al. (2003) and represent uncertainty using a scenario tree T over T decision

stages. For simplicity, we think of these stages occurring at evenly spaced increments of time. The

uncertain parameters represent a discrete-time stochastic process defined on a finite probability

space. The scenario tree at each stage t consists of a set of nodes that represents collections of states

of the world that are indistinguishable up to time t. We denote by n ∈ N the set of nodes of the

scenario tree.
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Stage 1 comprises only n = 1, the root node of T , which is where all scenarios have the same

realization. For each node n ∈ N , φn denotes the probability that the state of the world associated

with node n occurs. Tn denotes the successors of n which we define to include n itself. Thus, Tn

denotes n plus all nodes “below” n in the tree. Pn denotes the set of all predecessors of n, which

we define to include n itself. Thus, Pn denotes n plus all nodes “above” n in the tree. For any leaf

node n in the tree, Pn defines a scenario. We now present the compact formulation of our stochastic

capacity-planning model.

Data

cn discounted cost vector for expanding capacity of system facilities

at scenario-tree node n

qn discounted cost vector for operating the system at scenario-tree node n

u0 vector of initial capacities of facilities

Vn matrix that converts operating decisions and/or activities into capacity

utilization at scenario-tree node n

Uhn non-negative matrix that converts capacity-expansion decisions at scenario-tree

node h into available operating capacity at successor node n ∈ Th

Variables

Capacity-expansion decisions could be very complicated, because we might use various tech-

nologies to expand a facility f , and decisions in one time period could affect decisions in another.

For simplicity, the model we describe here assumes that facility f can be expanded at scenario-tree

node n or not, and can be expanded multiple times over the planning horizon. This gives:

x′
n vector of binary decisions for capacity expansion of facilities at scenario-tree

node n. Specifically, x′
fn = 1 if facility f is expanded at node n, 0 otherwise.

yn vector of continuous and/or discrete operating decisions at scenario-tree node n
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Formulation

CF: min
∑

n∈N

φn

(
c⊤n x′

n + q⊤
n yn

)
(1)

s.t. Vnyn ≤ u0 +
∑

h∈Pn

Uhnx
′
h ∀n ∈ N , (2)

yn ∈ Yn ∀n ∈ N , (3)

x′
n ∈ {0, 1} ∀n ∈ N . (4)

Random demands, costs etc., appear as the parameters subscripted by n in the model

(excluding φn). Constraints (3) represent generic relationships between the operational variables

yn, independent of all x′
h. Constraints (2) ensure that adequate capacity exists to satisfy the

operational requirements Vnyn at node n. The matrices Uhn can model lags between when capacity-

expansion decisions are executed and when capacity becomes available, and, more generally, can

model capacity that increases or decreases over time after installation.

Constraints (2) and (3) can handle a general operational model at each node of the sce-

nario tree. If a set of discrete capacity-expansion decisions adequately models continuous capacity

expansions, the “(SCAP)” model of Ahmed et al. (2003) may be viewed as an instance of CF. In

particular, this instance sets qn = 0 and defines constraints (3) as yn = dn, where dn represents

demands at node n.

Capacity-planning problems like CF typically have weak LP relaxations, and that makes

them difficult to solve. The scale imposed by a scenario tree, especially when some components

of yn must be integer, exacerbates this difficulty. On the other hand, an optimization model over

yn ∈ Yn, for a single node n, might be relatively easy to solve as a mixed-integer program. This

structure suggests some form of decomposition.

2.1 A Split-variable Reformulation and Dantzig-Wolfe Decomposition

The classical approach to solving multi-stage stochastic linear programs uses nested Benders de-

composition (e.g. Birge and Louveaux 1997, pp 234-236). In general, however, integer variables in
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subproblems makes Benders decomposition inapplicable.

Our approach exploits Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960) together

with dynamic column generation (e.g., Lübbecke and Desrosiers 2002). As we shall later discuss, a

straightforward Dantzig-Wolfe decomposition of CF could lead to a master problem that provides

a weak lower bound on the optimal value of CF. Consequently, we first reformulate CF using a

variable-splitting technique and then apply the decomposition. The split-variable formulation is

SV: min
∑

n∈N

φn

(
c⊤n x′

n + q⊤
n yn

)
(5)

s.t. xhn ≤ x′
h ∀n ∈ N , h ∈ Pn, (6)

Vnyn ≤ u0 +
∑

h∈Pn

Uhnxhn ∀n ∈ N , (7)

yn ∈ Yn ∀n ∈ N , (8)

x′
n ∈ {0, 1} ∀n ∈ N , (9)

xhn ∈ {0, 1} ∀n ∈ N , h ∈ Pn. (10)

The proof of the following proposition is obvious.

Proposition 1 (x′
n,yn)n∈N is feasible for CF if and only if there exists (xhn)h∈Pn,n∈N such that

(x′
n, (xhn)h∈Pn

,yn) is feasible for SV. That is, CF and SV are equivalent.

In SV, for each node n, and for each of its predecessor nodes h ∈ Pn, we define new variables

xhn that indicate whether capacity expansions of facilities at scenario-tree node h contribute towards

meeting the capacity requirement at node n. Here one may think of xhn as requests for capacity

expansions at nodes h ∈ Pn which, if granted, will jointly satisfy capacity requirements at node n.

Constraints (7) accumulate such requests. The variables x′
n determine actual capacity expansions

at node n and can be viewed as capacity grants. Thus the natural interpretation of constraints (6)

is variables xhn requesting capacity and variables x′
h granting capacity. (As an alternative, looking

“down the tree” from node n, one may split x′
n into variables xnh, which indicate whether a capacity-

expansion decision at node n is exploitable, non-exclusively, at successor node h; this equivalent
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interpretation can be formalized by rewriting constraints (6) as xnh ≤ x′
n ∀n ∈ N , h ∈ Tn.)

The split-variable reformulation has some similarities to the reformulation that Krarup and

Bilde (1977) use to strengthen lot-sizing models, and to the variable-disaggregation based reformu-

lation used by Ahmed et al. (2003) for strengthening stochastic capacity-expansion models. Our

model differs from those in that the split variables xhn are binary and force binary capacity-expansion

decisions x′
n that control the amount of capacity expansion. In contrast, Ahmed et al. (2003) disag-

gregate continuous variables that force continuous and binary capacity-expansion decisions. (We do

not consider continuous capacity expansions.) Their model strengthens because demand explicitly

provides a lower bound on the capacity requirement of a facility, and this allows the computation

of tighter constraints.

Variable splitting is a common technique used in stochastic programming to enable the

decomposition of certain models. The conventional application of this approach decomposes a

model by scenarios. The decomposed model can then be solved by a variety of approaches such

as Lagrangian relaxation (Schultz 2003), the branch-and-fix coordination scheme (Alonso-Ayuso et

al. 2003), or branch and price (Lulli and Sen 2004). Applied to CF, for each node n ∈ N , this

approach would split variables x′
n and yn, into variables for the stage t associated with n and all

scenarios s that are indistinguishable at n. Thus, the split variables here would be x′
ts and yts.

Because all split variables for a particular node n correspond to the same realization of the random

parameters, their values must be equal: “non-anticipativity constraints” impose this condition (e.g.,

Birge and Louveaux 1997, p 25). The scenario-decomposition approach relaxes the non-anticipativity

constraints to decompose the problem by scenario. The number of non-anticipativity constraints

can be very large as they must be imposed on all variables at each non-leaf node. This complicates

scenario-decomposition procedures.

In contrast to scenario decomposition, the master problem resulting from our decomposition

of SV is simpler as it only involves non-anticipativity constraints on the variables x′
n, and not on xhn

or yn. Moreover, this structure allows us to decompose the problem by scenario-tree node, which

results in smaller, more manageable subproblems (as described below).
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2.2 Dantzig-Wolfe Reformulation of SV

The capacity-expansion constraints (6) in SV link capacity expansions across successors of a scenario-

tree node; these are “complicating constraints” to what are otherwise a set of simpler (sub)problems,

one for each scenario-tree node n. (Subproblem n includes split variables xhn indexed over h ∈ Pn,

but these variables are not linked across subproblems. Thus, they may be viewed as alternative

capacity-expansion choices for subproblem n alone.) Thus, we can use decomposition to partition

the constraints of the split-variable formulation into two sets: the set of linking (complicating)

constraints (6), and the set of constraints specific to scenario-tree node n, for which we define

Xn =




(xhn)h∈Pn
| Vnyn ≤ u0 +

∑

h∈Pn

Uhnxhn, xhn ∈ {0, 1} ∀h ∈ Pn, yn ∈ Yn




 . (11)

In what follows, we find it convenient in some situations to replace the notation (xhn)h∈Pn
with the

more “vector-oriented” notation (xnn · · ·x1n) ≡ (xnn xp(n)n xp(p(n))n · · ·x1n), where p(n) denotes

the direct predecessor of node n.

Let Jn denote the index set for the finite set of vectors Xn, whereby Xn =
{
(x̂nn · · · x̂1n)j | j ∈ Jn

}
.

We can then express any element of Xn through

(xnn · · ·x1n) =
∑

j∈Jn

(x̂nn · · · x̂1n)jwj
n,

∑

j∈Jn

wj
n = 1, wj

n ∈ {0, 1} ∀ j ∈ Jn.

Each vector (x̂nn · · · x̂1n)j represents a collection of capacity-expansion requests from nodes h ∈ Pn;

satisfying these requests will ensure feasible system operation at node n. Hence we refer to each

collection of requests as a feasible expansion plan (FEP).

Without loss of generality, we may assume that each FEP has associated with it at least

one optimal operational plan ŷ
j
n, i.e., Jn simultaneously indexes FEPs and operational plans at

scenario-tree node n. Thus, we can attach the operational costs q⊤ŷ
j
n to the wj

n, and substitute the

expression above for (xnn · · ·x1n), to obtain the Dantzig-Wolfe reformulation of SV. (See Dantzig

and Wolfe 1960 as the seminal reference for models with continuous variables, and see Appelgren

1969 for the extension to integer variables.) We denote this multi-scenario, column-oriented master

problem as “MP”.
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For each scenario node n, MP contains a group of columns with index set Jn. Each j ∈ Jn

corresponds to an FEP. For simplicity, we assume that MP is always feasible, i.e., Jn 6= ∅ for any

n. The formulation for MP follows:

Sets and Indices

j ∈ Jn FEPs for scenario-tree node n

Data

x̂
j
hn binary vector representing capacity-expansion requests at node h that form part

of FEP j for node n

ŷ
j
n operational plan used with FEP j

Variables

x′
n binary decision vector for capacity expansion of facilities at scenario-tree node n

wj
n 1 if FEP j is selected for scenario-tree node n, 0 otherwise

Formulation

MP: min
∑

n∈N

φnc
⊤
n x′

n +
∑

n∈N

∑

j∈Jn

φnq
⊤
n ŷj

nwj
n [dual variables] (12)

s.t.
∑

j∈Jn

x̂
j
hnwj

n ≤ x′
h ∀n ∈ N , h ∈ Pn, [πhn] (13)

∑

j∈Jn

wj
n = 1 ∀n ∈ N , [µn] (14)

wj
n ∈ {0, 1} ∀n ∈ N , j ∈ Jn,

x′
n ∈ {0, 1} ∀n ∈ N .

Note that dual variables correspond to constraints in the LP relaxation of MP, which we denote as

MP-LP. Optimal dual variables for restricted versions of MP-LP (and the other master problem in

section 4) will be extracted for purposes of column generation.

MP’s objective function (12) minimizes expected capacity-expansion costs plus expected

operational costs. Constraints (13) ensure that no FEP is chosen for any node without sufficient

capacity having been installed (granted). “Convexity constraints” (14) select exactly one FEP for

each n.
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Naturally, the cardinality of Jn in MP will be huge, so we solve MP using dynamic column

generation. First, we create a restricted master problem (RMP) in which each set Jn represents a

modest-sized subset of all the FEPs at scenario-tree node n. We solve the LP relaxation of RMP

(RMP-LP), which replaces wj
n ∈ {0, 1} and x′

n ∈ {0, 1} by wj
n ≥ 0 and x′

n ≥ 0, respectively. (The

convexity constraints imply satisfaction of wj
n ≤ 1 and x′

n ≤ 1.) Given a solution to RMP-LP, we

extract dual variables, and attempt to generate new columns corresponding to FEPs with negative

reduced costs, by solving optimization subproblems (e.g., Barnhart et al. 1998, Lübbecke and

Desrosiers 2002).

The cycle of solving RMP-LP, extracting duals, and generating new columns repeats until

no columns price favorably, i.e., no columns with negative reduced cost can be found and so we have

solved MP-LP to optimality. If the optimal solution to MP-LP happens to be integer, then we have

solved MP. If not, we may resort to a branch-and-price algorithm, which generates columns within

a branch-and-bound procedure (Savelsbergh 1997), or settle for solving the RMP as an IP in the

hope of getting a good integer solution.

A column j for node n in MP has the form [φnq
⊤
n ŷ

j
n, (x̂nn · · · x̂1n)j , 1]⊤, where q⊤

n ŷ
j
n is the

cost of the associated operational plan ŷ
j
n, and (x̂nn · · · x̂1n)j is the corresponding FEP. Given the

optimal duals, π̂
⊤
hn and µ̂n from RMP-LP, we can identify the column j ∈ Jn having the most

favorable reduced cost by solving the subproblem

SP(n): min φnq
⊤
n yn −

∑

h∈Pn

π̂
⊤
hnxhn − µ̂n (15)

s.t. Vnyn ≤ u0 +
∑

h∈Pn

Uhnxhn, (16)

yn ∈ Yn, (17)

xhn ∈ {0, 1} ∀h ∈ Pn. (18)

Any solution ((xnn · · ·x1n),yn) of SP(n) with a negative objective value lets us create a new column

for RMP, i.e., add a new element to Jn. If no such solution exists for any n, then we have solved

MP-LP to optimality.
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3 Strength of the Decomposition

Dantzig-Wolfe decomposition of a large LP replaces the direct solution of a large-scale problem

with a sequence of solutions of smaller, easier-to-solve problems. This indirect approach helps when

solving large MIPs too. Decomposition of a MIP may also improve solution efficiency by defining

a master problem whose LP relaxation is stronger than the relaxation of the original MIP. The SV

reformulation of CF makes this possible in our case.

Recall that Dantzig-Wolfe decomposition expresses feasible points for the LP relaxation of

the master problem as convex combinations of extreme points of the convex hulls of the set of

feasible solutions for the subproblems. If each subproblem is simply an LP, then the convex hull

of the set of feasible solutions is identical to the LP feasible region, and optimal solutions of the

LP relaxation of the master problem will have the same value as the LP relaxation of the original

problem. On the other hand, if the convex hull of a subproblem’s feasible solutions is smaller than

its LP feasible region—for example when the subproblem is an IP whose LP relaxation does not

have integer extreme points—then the resulting master problem can have a tighter relaxation than

that of the original MIP (Barnhart et al. 1998).

In CF, we might consider applying a conventional Dantzig-Wolfe reformulation to the capacity-

expansion constraints (2). This results in subproblems for each scenario-tree node n with operational

constraints (3) only over Yn. Indeed, in the not-uncommon case in which the yn are continuous

variables, the subproblems for a decomposition of CF are LPs, and no strengthening is obtained.

On the other hand, in the Dantzig-Wolfe decomposition of SV, the subproblems SP(n) can

be viewed as single-period, discrete, capacity-expansion problems, which can be shown to be NP-

hard (by transformation to minimum-cover problems). Thus, they do not have LP relaxations with

integer extreme points, and so our decomposition gives a master problem whose LP relaxation is

stronger than that of the SV model. For example, in one of our test-problem instances the optimal

objective value for the LP relaxation of SV equals 123,388; in comparison, the corresponding MP-LP

has an optimal objective value of 960,881, a 779% improvement.
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It is also remarkable that MP-LP almost always has an optimal integer solution. Because

the constraint matrix for this problem has coefficients that are either 0 or 1, it is easy to see that

fixing the wj
n to binary values leads to binary solutions for x′

n even when these variables are allowed

to be continuous. For each node n in the scenario tree, the submatrix corresponding to the variables

wj
n has a perfect-matrix structure (Padberg 1974). These perfect submatrices prevent fractional

solutions from occurring within a single block of variables wj
n, j ∈ Jn, thus making it less likely for

fractional solutions to occur in MP-LP. (See Ryan and Falkner 1988 for an account of this effect

in set-partitioning problems.) On the other hand, the constraint matrix of MP-LP as a whole may

not be perfect since it has constraints on x′
n that link its (perfect) submatrices. Consequently, the

interaction between these submatrices can give rise to fractional solutions, although we find that

these occur only rarely in practice. (Section 5 provides an example of a fractional optimal solution.)

4 At Most One Capacity Expansion of a Facility

The general model SV allows a facility’s capacity to be expanded more than once over the plan-

ning horizon. However, in some industries, over reasonably long horizons, planning for multiple

expansions makes little sense because associated fixed charges are large, or “setups” have highly

undesirable side effects.

This section therefore studies a version of SV that restricts each facility to being expanded

at most once over the planning horizon. We also assume that Uhn is deterministic and does not

evolve with the scenario tree or change over time, i.e., Uhn = U ∀n ∈ N , h ∈ Pn. With these

changes, SV becomes:

SV1′: min
∑

n∈N

φn

(
c⊤n x′

n + q⊤
n yn

)
(19)

s.t. xhn ≤ x′
h ∀n ∈ N , h ∈ Pn, (20)

Vnyn ≤ u0 + U
∑

h∈Pn

xhn ∀n ∈ N , (21)

∑

h∈Pn

x′
h ≤ 1 ∀n ∈ N , (22)
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yn ∈ Yn ∀n ∈ N , (23)

x′
n ∈ {0, 1} ∀n ∈ N , (24)

xhn ∈ {0, 1} ∀n ∈ N , h ∈ Pn. (25)

The reader will note that constraints (22) for non-leaf nodes are redundant. However, we

include all these constraints in RMP-LP because, for reasons we cannot explain, the Dantzig-Wolfe

algorithm tends to solver faster that way. (Of course, we turn off the optimizer’s presolver when

solving these LP relaxations so that it does not eliminate the redundant constraints.)

It is convenient to transform SV1′ into an equivalent formulation with fewer variables:

SV1: min
∑

n∈N

φn

(
c⊤n x′

n + q⊤
n yn

)
(26)

s.t. xn ≤
∑

h∈Pn

x′
h ∀n ∈ N , (27)

Vnyn ≤ u0 + Uxn ∀n ∈ N , (28)

∑

h∈Pn

x′
h ≤ 1 ∀n ∈ N , (29)

yn ∈ Yn ∀n ∈ N , (30)

x′
n ∈ {0, 1} ∀n ∈ N , (31)

xn ∈ {0, 1} ∀n ∈ N . (32)

SV1′ and SV1 are equivalent problems by virtue of the following proposition.

Proposition 2 There exists (xhn)h∈Pn
with (x′

n, (xhn)h∈Pn
,yn) being feasible for SV 1′ if and only

if there exists xn such that (x′
n,xn,yn) is feasible for SV 1.

Proof. Suppose (x′
n, (xhn)h∈Pn

,yn) is feasible for SV1′. Let xn =
∑

h∈Pn

xhn. To show that

(x′
n,xn,yn) is feasible for SV1, it suffices to check that constraints (27), (28) and (32) are satisfied.

Constraints (20) imply (27), and constraints (21) give (28). Moreover, xn is binary because of (20)

and (22).
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Conversely, if (x′
n,xn,yn) is feasible for SV1, then let xhn = x′

h for all h ∈ Pn. All constraints

of SV1′ hold trivially, except for (21). These constraints are satisfied because

Vnyn ≤ u0 + Uxn ≤ u0 + U
∑

h∈Pn

x′
h = u0 + U

∑

h∈Pn

xhn.

This completes the proof.

We can now formulate a Dantzig-Wolfe decomposition of SV1, analogous to that of section

2.2, by defining

Xn = {xn | Vnyn ≤ u0 + Uxn, xn ∈ {0, 1}, yn ∈ Yn} ,

and by expressing xn through x̂
j
n, j ∈ Jn, which denote the enumerated feasible solutions in Xn:

xn =
∑

j∈Jn

x̂j
nwj

n,
∑

j∈Jn

wj
n = 1, wj

n ∈ {0, 1}, ∀ j ∈ Jn.

This gives a simplified master problem

MP1: min
∑

n∈N

φnc
⊤
n x′

n +
∑

n∈N

∑

j∈Jn

φnq
⊤
n ŷj

nwj
n [dual variables] (33)

s.t.
∑

j∈Jn

x̂j
nwj

n ≤
∑

h∈Pn

x′
h ∀n ∈ N , [πn] (34)

∑

h∈Pn

x′
h ≤ 1 ∀n ∈ N , (35)

∑

j∈Jn

wj
n = 1 ∀n ∈ N , [µn] (36)

wj
n ∈ {0, 1} ∀n ∈ N , j ∈ Jn,

x′
n ∈ {0, 1} ∀n ∈ N ,

and a simpler subproblem

SP1(n): min φnq
⊤
n yn − π̂

⊤
n xn − µ̂n (37)

s.t. Vnyn ≤ u0 + Uxn, (38)

yn ∈ Yn, (39)

xn ∈ {0, 1}. (40)
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Recall that SP(n) includes binary variables xhn for all nodes h ∈ Pn. In contrast, SP1(n) incorpo-

rates only binary variables xn. Thus, the number of binary variables in SP1(n) reduces by a factor

of |Pn|, which can make this subproblem easier to solve.

5 Computational Results

This section applies the SV and SV1 formulations to instances of a model for planning the capacity

expansion of an electricity distribution network subject to uncertain demand. The details of this

class of model have been described in Singh (2004), so we give only a brief description. A distribution

network is the low-voltage part of the electricity system supplying customers from a single source

(typically a substation connected to generating plants through the high voltage transmission system).

For each demand realization, the distribution network of interest must operate in a radial (tree)

configuration, which means that power flows from the source to each demand point along a unique

path of power lines. Typically, each power line has a switch at either end that can be open or

closed, and although the full network has an underlying mesh structure, it is operated in a radial

configuration by opening and closing these switches.

The configuration of the switches is determined by binary variables within constraints yn ∈

Yn, which must be satisfied at each scenario-tree node n. This makes each subproblem (SP(n) or

SP1(n)) a challenging mixed-integer program in its own right. A “super-network model” for any

subproblem provides a stronger LP relaxation for that subproblem. This model replaces certain

sets of nodes and edges with simpler constructs involving “super-nodes” and “super-edges” which

reduces the number of binary variables, and exploits some problem-specific valid inequalities; see

Singh et al. (2004) for details. We make use of this strengthened formulation in all of the tests

reported here.

We report results for seven problem instances, which differ by the number of stages in

a binary scenario tree (five problems) and the number of stages in a ternary scenario tree (two

problems). All problem instances derive from data for an actual distribution network in Auckland,

New Zealand. The network data comprise 152 nodes, most of which are demand points, and 182
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edges. All problem instances have been designed so that an optimal solution always exists in which

no edge is expanded more than once over the planning horizon. This allows us to apply both SV1

and SV formulations and make direct comparisons.

We have implemented and tested our algorithms on a desktop computer with a Pentium IV

2.6 GHz processor, and 1 GB of RAM. We generate all models, and implement our decomposition

algorithms within the Mosel algebraic modeling system, version 1.24, from Dash Optimization. The

LP restricted-master problems are solved with Xpress Optimizer, version 14.24, also from Dash

Optimization, but the MIP subproblems and the deterministic-equivalent models are solved with

CPLEX, version 9.0 from ILOG, Inc.

Solver settings remain constant throughout all tests. All MIPs are solved with default

parameter settings except that Gomory cuts are turned off and a moderate level of probing is used

(CPX PARAM PROBE = 2). All subproblems are solved to optimality and the deterministic-

equivalent problems are solved with a relative optimality tolerance of 1.0%. The time to solve each

problem instance is limited to 7,200 seconds.

Observe that any (nontrivial) instances of RMP-LP will be infeasible unless one feasible

column (FEP) exists for each scenario-tree node. We could use the classical “Phase I” approach to

finding an initial feasible solution (e.g., Dantzig and Thapa 2003, pp 291-292), but it is simpler to

guarantee such a solution by seeding the master problem with one FEP for each scenario-tree node.

Except for trivially infeasible problems, an FEP for each node that requires all possible capacity

expansions will surely be feasible, so those generate our initial columns.

Any such FEP translates into a column in RMP-LP that has coefficients of 1 in the capacity-

expansion constraints for each facility, a coefficient of 1 in the convexity constraint for the corre-

sponding scenario-tree node, and 0s elsewhere. Note that our application imposes no operational

costs, so these initial columns, as well as the columns generated later, all have cost coefficients of 0.

At each iteration of the Dantzig-Wolfe decomposition, a lower bound zLP on z∗LP , the optimal

objective value for MP-LP, is readily available. In particular, using the arguments in Wolsey (1998,
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p 189), it is easy to show that

zLP = zLP +
∑

n∈N

δn ≤ z∗LP , (41)

where zLP and δn denote the optimal objective values for RMP-LP and SP(n) at the current it-

eration, respectively. Note that this lower bound is only valid when “full pricing” is invoked, i.e.,

after all subproblems SP(n), n ∈ N have been solved to optimality. At any particular iteration, it is

easy to compute an upper bound zIP on the optimal integer objective of MP by solving the integer

RMP (RMP-IP) with the existing set of columns (assuming this is feasible). We define the (relative)

optimality gap for the master problem, “MP-Gap”, as 100% × (zIP − zLP )/zLP . MP-Gap gives an

optimality check on our algorithm which can be used to terminate the Dantzig-Wolfe decomposition

early if it has decreased to a tolerable level.

Observe that when the solution to RMP-LP is fractional, we must solve RMP-IP to obtain

zIP , which can be expensive if carried out at every iteration. Thus for the overall efficiency of the

algorithm, the number of such checks should be minimized. As an empirical rule, we start checking

the MP-Gap at the first iteration when the gap between the RMP-LP objective and the lower

bound, “LP-Gap”, reaches 80% of a (preset) termination tolerance. For instance, for a termination

tolerance of 5%, we start checking MP-Gap when LP-Gap reaches 4%. After the first check, we

re-solve RMP-IP with a branch-and-bound algorithm only when RMP-LP yields fractional solutions

for five consecutive iterations. We demonstrate the effect of termination tolerances on solution times

later.

Unfortunately our Dantzig-Wolfe master problems suffer from severe dual degeneracy. Con-

sequently, convergence using a conventional Dantzig-Wolfe algorithm is slow, ranging from hours to

days. To improve convergence, we apply “duals stabilization” in the RMP-LP, and compare two

different methods: du Merle et al. (1999) describe the first, which we call “du Merle stabilization”;

the other simply generates interior-point dual solutions by solving RMP-LP using an interior-point

algorithm. For lack of a better phrase, we call this technique “interior-point duals stabilization”.

The optimal solutions of MP-LP are invariably integer in our test problems. Consequently,

we have not required a full branch-and-price solution procedure. It is interesting to note, however,
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that fractional optimal solutions are possible, at least in the master problem of the SV formulation;

see figure 1 for an example network and figure 2 for the corresponding MP-LP.
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Figure 1: Data for an example in which the master problem of SV formulation has a fractional LP
solution. The diagram on the left represents a distribution network with three edges that connect
supply node 3 to demand nodes 1 and 2. The tables on the right contain data for a single-scenario,
2-stage problem instance, i.e., N = {1, 2}; here, Uehn = Ue, ∀n ∈ N , h ∈ Pn.
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Figure 2: Constraint matrix and LP solution to the master problem of SV for the 2-stage single-
scenario problem specified in figure 1. The solution is fractional.

The fractions arise from the interaction of requests by scenario-tree nodes 1 and 2 for capacity

expansions on edges 1 and 2 at scenario-tree node 1. Interestingly, however, an alternate, integer,

optimal solution exists: x′
11 = 0, x′

21 = 1, x′
31 = 1, x′

12 = 1, x′
22 = 1, x′

32 = 1, w1
1 = 0, w2

1 = 1, w3
1 =

0, w1
2 = 0 and w2

2 = 1.
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Table 1: Solution times for each procedure. The values in parentheses are the relative optimality
gaps achieved at 7,200 seconds. An asterisk denotes that no integer feasible solution was found in
7,200 seconds and a dash indicates that the optimality gap was more than 100%.

We use the following abbreviations to denote the various formulations discussed in earlier

sections.

Abbreviation Formulation and Solution Procedure

SV-DE general split-variable formulation SV, solved as a deterministic equivalent

SV1-DE specialized split-variable formulation SV1 that allows the expansion of

a facility at most once in a scenario, solved as a deterministic equivalent

SV-DW-M Dantzig-Wolfe decomposition of SV with du Merle duals stabilization

SV-DW-I Dantzig-Wolfe decomposition of SV with interior-point duals stabilization

SV1-DW-M Dantzig-Wolfe decomposition of SV1 with du Merle duals stabilization

SV1-DW-I Dantzig-Wolfe decomposition of SV1 with interior-point duals stabilization

Table 1 displays the scenario-tree statistics for the seven problem instances, along with their

solution times as deterministic equivalents, or using Dantzig-Wolfe decomposition. These results

illustrate the power of decomposition in solving the larger problem instances.

The test problems are quite large. The largest SV instance we can solve with decomposition

has 5 stages and 81 scenarios. It results in an SV-DE model having 158,602 binary variables and

194,864 constraints. The corresponding SV1-DE model has 81,070 binary variables and 117,332 con-
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straints. Both models have 15,004 continuous variables. Neither CPLEX 9.0 nor Xpress Optimizer

14.24 can solve either of these problems in one day of computing time.

For this same instance, the largest subproblems for SV-DW have only 1,216 binary variables,

while the SV1-DW subproblems have just 488 binary variables. The subproblems share the same

124 continuous variables and 800 constraints, and each solves in under 3 seconds on average. (Recall

that the number of binary variables in the SV-DW subproblem for node n increases with its depth

in the scenario tree. Thus, the subproblems for leaf nodes are the largest.)

The master problems for SV-DW and SV1-DW are of modest size, too. The restricted

SV1-DW-I master problem for the 5-stage-81-scenario problem has only 23,161 variables in its last

iteration, iteration 18 (see Table 3), and requires only 8.5 seconds to solve. In all iterations it

has 44,165 constraints. The SV-DW master problem always has more constraints (see section 2.2),

but its linear-programming relaxation usually solves quickly, too. The SV-DW master problem has

99,675 constraints for the 5-stage-81-scenario problem instance. Although SV-DW-I cannot solve

this problem in under 7,200 seconds, at iteration 18 its LP master problem has 24,181 variables and

solves in 7.3 seconds, while at iteration 92 the number of variables grows to 27,808, but still requires

only 9.9 seconds to solve.

Our results show that interior-point duals stabilization is an important adjunct to the de-

composition methodology, and that it is clearly superior to du Merle stabilization. For the 2-stage-

2-scenario problem instance, the du Merle stabilization requires extensive tuning of its parameters

to get SV-DW-M to converge. We also spent considerable effort tuning parameters for the 3-stage-4-

scenario problem instance, but without success (as indicated by the dash). In contrast, the interior-

point duals stabilization requires no tuning (other than ensuring that the standard “crossover”

to a basic feasible solution is disabled), and it significantly outperforms the du Merle alternative.

Nonetheless, the results of both duals-stabilization schemes exhibit the well-known tailing-off effect.

Thus, terminating the Dantzig-Wolfe decomposition early by setting an acceptable optimality tol-

erance for MP-Gap may still give good solutions, without incurring the excessive computation time

that it can take to reach optimality. Table 2 reports the time it takes SV-DW-I and SV1-DW-I to
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satisfy tolerances of 5%, 1% and 0%.
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Table 2: Computation times for SV-DW-I and SV1-DW-I to reach relative optimality gaps of 5%,
1% and 0%.

Table 3 reports the corresponding number of restricted master-problem iterations. As shown

in this table, the SV-DW decomposition requires many more iterations to converge than SV1-DW. As

observed above, the differences in the average solution times between the restricted master problems

and subproblems for SV and SV1 are relatively small. So the large differences seen in overall solution

times clearly result from SV-DW-I requiring many more iterations than SV1-DW-I. (It is interesting

to see that the number of iterations for SV1-DW-I does not increase commensurately with problem

size, at least for this application. This bodes well for solving even larger problems.)

It is important to note that the subproblems for this particular application are difficult,

deterministic network-design problems (Johnson, Lenstra and Rinnooy Kan 1978). For this reason,

and because we solve one subproblem for each scenario-tree node in each iteration, the total time

spent solving subproblems is substantial. SV-DW-I spends 93.7% of its time solving subproblems

while SV1-DW-I spends 98.2%, averaged over the problems both methods can solve. Clearly, then,

any improvement in solution time for subproblems will improve overall solution time almost as much.

All of the technology that has proved useful for solving deterministic network-design problems is

worth evaluating for this purpose (e.g., Bienstock and Muratore 2000, Magnanti and Raghavan
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Table 3: Number of iterations for SV-DW-I and SV1-DW-I to reach relative optimality gaps of 5%,
1% and 0%.

2005).

As a final note, models that fit the SV or SV1 paradigm, but which have simpler subproblems,

may solve very quickly. For instance, the multi-stage stochastic model of Riis and Anderson (2004)

does fit the paradigm of SV, and its subproblems are simple knapsack problems, easily solved by

dynamic programming.

6 Conclusions

We have described a general, compact formulation of a multi-stage stochastic integer-programming

model for planning the capacity expansion of a production system with one or more production

facilities. Capacity-expansions are discrete, and a scenario tree represents uncertainty.

We reformulate the compact formulation using a variable-splitting technique to give a gen-

eral, split-variable model (SV) that allows multiple capacity expansions of a facility over the plan-

ning horizon. Based on SV we also devise a split-variable model (SV1) that restricts each facility

to at most one capacity expansion over the planning horizon. A Dantzig-Wolfe reformulation of

either model results in a master problem having a substantially stronger LP relaxation than the

deterministic-equivalent formulation.

24



For each node n in the scenario tree, we define Pn to be the set of all predecessors of n,

including n itself. Apart from variables xhn, which denote requests for capacity to be installed

in nodes h ∈ Pn, the variables in a subproblem SP(n) for the Dantzig-Wolfe reformulation of SV

pertain only to node n. Indeed these variables can be viewed in the subproblem simply as alternative

capacity-expansion options at node n of the scenario tree. As a result, the subproblems increase

in difficulty only slightly with an increasing number of stages in a scenario tree. In SV1, the

situation is even better, because the column-generation subproblems involve no variables (such as

xhn) from predecessor nodes in the scenario tree. Thus, these subproblems do not become larger

as the number of stages increases. This situation contrasts with scenario-decomposition methods in

which the subproblems must cover an entire planning horizon, and so increase in size as more stages

are added.

We have applied our methods to solve a capacity-planning problem for an electricity-distribution

network, which requires the use of mixed-integer subproblems. However, the algorithm described

is quite general. As long as good algorithms exist to solve them, the subproblems can incorporate

arbitrary non-linearities or other complexities, which other applications may require.

The efficiency of column generation hinges on the use of a good duals-stabilization scheme

for the master problem. For our application, the “interior-point duals stabilization” scheme, which

obtains dual variables from an interior-point algorithm, greatly outperforms the well-known scheme

of du Merle et al. (1999). Note that in our implementation of the interior-point method, we re-solve

the master problems from a cold-start after adding a new set of columns. There is some potential

to increase the speed of our algorithm by re-solving the master problems faster, using a suitable

hot-start procedure for interior-point methods (e.g., Gondzio and Grothey 2003).

Our split-variable formulation uses inequality non-anticipativity constraints. The validity

of these constraints relies on the assumption that capacity expansions are non-negative quanti-

ties. If this assumption were to be removed (for example, to admit facility closures) then the

non-anticipativity constraints must be replaced by equalities in order to make SV correspond to

CF. Based on this observation, it is tempting to suppose that general multi-stage stochastic integer-
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programming problems might be profitably attacked using the approach outlined in this paper. Our

experiments show that a formulation with an equality-constrained master problem can be solved

using this approach, albeit with some increase in computational effort. For small problems, this is a

modest increase, but the larger problems take up to ten times longer, so more research is necessary

to make our approach viable for the general case.
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wolfach, 1976). Birkhäuser, Basel, 155–180. Internat. Ser. Numer. Math., Vol. 36.

Laguna, M. 1998. Applying robust optimization to capacity expansion of one location in telecom-

munications with demand uncertainty. Management Science 44 S101–S110.
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